

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # MetaPathways 2: A master-worker model for environmental Pathway/Genome Database construction on grids and clouds

Niels W. Hanson, Kishori M. Konwar, Shang-Ju Wu, and Steven J. Hallam

Updates

November 27, 2014: [MetaPathways v2.5 released](https://github.com/hallamlab/metapathways2/releases/tag/v2.5) with upgrades to the pipeline:

	LAST homology searches with BLAST-equivalent output and E-values

	Reads per kilobase per million mapped (RPKM) coverage measure for Contig annotations calculated from raw reads (.fastq) or mapping files (.SAM) using [bwa](http://bio-bwa.sourceforge.net)

	Addition of the [CAZy sequence database](http://www.cazy.org) as a new compatible functional hierachy

	GUI Keyword-search from annotation subsetting and projection onto different functional hierarcies (KEGG, COG, SEED, MetaCyc, and now CAZy)

See [the release page](https://github.com/hallamlab/metapathways2/releases/tag/v2.5) and [the wiki](https://github.com/hallamlab/metapathways2/wiki) for more information.

Abstract

The development of high-throughput sequencing technologies over the past decade has generated a tidal wave of environmental sequence information from a variety of natural and human engineered ecosystems. The resulting flood of infor- mation into public databases and archived sequencing projects has exponentially expanded computational resource requirements rendering most local homology-based search methods inefficient. We recently introduced MetaPathways v1.0, a modular annotation and analysis pipeline for constructing environmental Pathway/Genome Databases (ePGDBs) from environmental sequence information capable of using the Sun Grid engine for external resource partitioning. However, a command-line interface and facile task management introduced user activation barriers with concomitant decrease in fault tolerance.

Here we present MetaPathways v2.0 incorporating a graphical user interface (GUI) and refined task management methods. The MetaPathways GUI provides an intuitive display for setup and process monitoring and supports interactive data visualization and sub-setting via a custom Knowledge Engine data structure. A master-worker model is adopted for task management allowing users to scavenge computational results from a number of worker grids in an ad hoc, asynchronous, distributed network that dramatically increases fault tolerance. This model facilitates the use of EC2 instances extending ePGDB construction to the Amazon Elastic Cloud.

Installation

MetaPathways v2.5 requires Python 2.7 or greater and [Pathway Tools](http://bioinformatics.ai.sri.com/ptools/) developed by SRI International for full functionality.

The MetaPathways Python codebase as well as the compiled GUI binaries for Mac OSX and Ubuntu are self-contained in this GitHub distro. GUI source code can be [obtained here](https://github.com/hallamlab/MetaPathwaysGUI).

Please see the [MetaPathways v2.5 wiki](https://github.com/hallamlab/metapathways2/wiki) for more installation details.

A template [MetaPathways_DBs.zip (Updated: October 2014)](https://www.dropbox.com/s/ye3kpve041e0r39/MetaPathways_DBs.zip?dl=0) contains starter protein and taxonomic databases
Installation steps and information

	The folder with the script where MetaPathways.py is referred to as METAPATHWAYS_FOLDER

	copy over the files template_config.txt and tempalate_params.txt to the folder METAPATHWAYS_FOLDER

	the LAST, BLAST and other third party exectables should be in a subfolder in METAPATHWAYS_FOLDER

	the formatted databases should be in a separate folder, we refer to it as METAPATHWAYS_DB folder

	the template_config.txt files should be pointed to the the actual folders

	the tempalte_params.txt is use while running the pipeline

	before running the script the user must run “source <METAPATHWAYS_FOLDER>/MetaPathwaysrc

Citation

If using MetaPathways v2.0 for reserach work please cite:

Niels W. Hanson, Kishori M. Konwar, Shang-Ju Wu, Steven J. Hallam. MetaPathways v2.0: A master-worker model for environmental Pathway/Genome Database construction on grids and clouds. Proceedings of the 2014 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2014), Honolulu, HI, USA, May 21-24, 2014. [doi:10.1109/CIBCB.2014.6845516](http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6845516)

 # FAST: Optimized threading for fast annotation

Dongjae Kim, Aria S. Hahn, Niels W. Hanson, Kishori M. Konwar, and Steven J. Hallam

Comparative genomic research relies heavily on protein alignment to infer the metabolic potential of an organism or community. Local Alignment Search Tool LAST, uses adaptive seed lengths to gain approximately 50 times the speed of standard seed-and-extend algorithm BLAST. However, LAST is currently capable of utilizing a single CPU. Here, we present FAST, a multi-threaded, IO optimized implementation of LAST that uses a model for algorithmic thread synchronization to allow efficient use of multiple CPU processes while requiring only 4-8GB of memory. We demonstrate that FAST is approximately 6-times faster than LAST using real world environmental data with > 50,000 sequences, and show that FAST is over 2-times faster than DIAMOND, the fastest available aligner prior to FAST. Finally, we implement new features such as the calculation of BLAST like e-values, and tabular format outputs compatible with multiple downstream analyses tools.

More information can be found on the [Wiki](https://github.com/hallamlab/FAST/wiki).

Test datasets used to produce the claimed results can be found on Dropbox https://www.dropbox.com/sh/phgpjur66fhvej3/AAAgpIfERMdGXux5yXhPQL-Ta?dl=0.

Release 0.7.17 (23 October 2017)

This release adds option -q to preserve the mapping quality of split alignment
with a lower alignment score than the primary alignment. Option -5
automatically applies -q as well.

(0.7.17: 23 October 2017, r1188)

Release 0.7.16 (30 July 2017)

This release added a couple of minor features and incorporated multiple pull
requests, including:

	Added option -5, which is useful to some Hi-C pipelines.

	Fixed an error with samtools sorting (#129). Updated download link for
GRCh38 (#123). Fixed README MarkDown formatting (#70). Addressed multiple
issues via a collected pull request #139 by @jmarshall. Avoid malformatted
SAM header when -R is used with TAB (#84). Output mate CIGAR (#138).

(0.7.16: 30 July 2017, r1180)

Release 0.7.15 (31 May 2016)

Fixed a long existing bug which potentially leads to underestimated insert size
upper bound. This bug should have little effect in practice.

(0.7.15: 31 May 2016, r1140)

Release 0.7.14 (4 May 2016)

In the ALT mapping mode, this release adds the “AH:*” header tag to SQ lines
corresponding to alternate haplotypes.

(0.7.14: 4 May 2016, r1136)

Release 0.7.13 (23 Feburary 2016)

This release fixes a few minor bugs in the previous version and adds a few
minor features. All BWA algorithms should produce identical output to 0.7.12
when there are no ALT contigs.

Detailed changes:

	Fixed a bug in “bwa-postalt.js”. The old version may produce 0.5% of wrong
bases for reads mapped to the ALT contigs.

	Fixed a potential bug in the multithreading mode. It may occur when mapping
is much faster than file reading, which should almost never happen in
practice.

	Changed the download URL of GRCh38.

	Removed the read overlap mode. It is not working well.

	Added the ropebwt2 algorithm as an alternative to index large genomes.
Ropebwt2 is slower than the “bwtsw” algorithm, but it has a permissive
license. This allows us to create an Apache2-licensed BWA (in the “Apache2”
branch) for commercial users who are concerned with GPL.

(0.7.13: 23 Feburary 2016, r1126)

Release 0.7.12 (28 December 2014)

This release fixed a bug in the pair-end mode when ALT contigs are present. It
leads to undercalling in regions overlapping ALT contigs.

(0.7.12: 28 December 2014, r1039)

Release 0.7.11 (23 December, 2014)

A major change to BWA-MEM is the support of mapping to ALT contigs in addition
to the primary assembly. Part of the ALT mapping strategy is implemented in
BWA-MEM and the rest in a postprocessing script for now. Due to the extra
layer of complexity on generating the reference genome and on the two-step
mapping, we start to provide a wrapper script and precompiled binaries since
this release. The package may be more convenient to some specific use cases.
For general uses, the single BWA binary still works like the old way.

Another major addition to BWA-MEM is HLA typing, which made possible with the
new ALT mapping strategy. Necessary data and programs are included in the
binary release. The wrapper script also optionally performs HLA typing when HLA
genes are included in the reference genome as additional ALT contigs.

Other notable changes to BWA-MEM:

	Added option -b to bwa index. This option tunes the batch size used in
the construction of BWT. It is advised to use large -b for huge reference
sequences such as the BLAST nt database.

	Optimized for PacBio data. This includes a change to scoring based on a
study done by Aaron Quinlan and a heuristic speedup. Further speedup is
possible, but needs more careful investigation.

	Dropped PacBio read-to-read alignment for now. BWA-MEM is good for finding
the best hit, but is not very sensitive to suboptimal hits. Option -x pbread
is still available, but hidden on the command line. This may be removed in
future releases.

	Added a new pre-setting for Oxford Nanopore 2D reads. LAST is still a little
more sensitive on older bacterial data, but bwa-mem is as good on more
recent data and is times faster for mapping against mammalian genomes.

	Added LAST-like seeding. This improves the accuracy for longer reads.

	Added option -H to insert arbitrary header lines.

	Smarter option -p. Given an interleaved FASTQ stream, old bwa-mem identifies
the 2i-th and (2i+1)-th reads as a read pair. The new verion identifies
adjacent reads with the same read name as a read pair. It is possible to mix
single-end and paired-end reads in one FASTQ.

	Improved parallelization. Old bwa-mem waits for I/O. The new version puts
I/O on a separate thread. It performs mapping while reading FASTQ and
writing SAM. This saves significant wall-clock time when reading from
or writing to a slow Unix pipe.

With the new release, the recommended way to map Illumina reads to GRCh38 is to
use the bwakit binary package:

bwa.kit/run-gen-ref hs38DH
bwa.kit/bwa index hs38DH.fa
bwa.kit/run-bwamem -t8 -H -o out-prefix hs38DH.fa read1.fq.gz read2.fq.gz | sh

Please check bwa.kit/README.md for details and command line options.

(0.7.11: 23 December 2014, r1034)

Release 0.7.10 (13 July, 2014)

Notable changes to BWA-MEM:

	Fixed a segmentation fault due to an alignment bridging the forward-reverse
boundary. This is a bug.

	Use the PacBio heuristic to map contigs to the reference genome. The old
heuristic evaluates the necessity of full extension for each chain. This may
not work in long low-complexity regions. The PacBio heuristic performs
SSE2-SW around each short seed. It works better. Note that the heuristic is
only applied to long query sequences. For Illumina reads, the output is
identical to the previous version.

(0.7.10: 13 July 2014, r789)

Release 0.7.9 (19 May, 2014)

This release brings several major changes to BWA-MEM. Notably, BWA-MEM now
formally supports PacBio read-to-reference alignment and experimentally supports
PacBio read-to-read alignment. BWA-MEM also runs faster at a minor cost of
accuracy. The speedup is more significant when GRCh38 is in use. More
specifically:

	Support PacBio subread-to-reference alignment. Although older BWA-MEM works
with PacBio data in principle, the resultant alignments are frequently
fragmented. In this release, we fine tuned existing methods and introduced
new heuristics to improve PacBio alignment. These changes are not used by
default. Users need to add option “-x pacbio” to enable the feature.

	Support PacBio subread-to-subread alignment (EXPERIMENTAL). This feature is
enabled with option “-x pbread”. In this mode, the output only gives the
overlapping region between a pair of reads without detailed alignment.

	Output alternative hits in the XA tag if there are not so many of them. This
is a BWA-backtrack feature.

	Support mapping to ALT contigs in GRCh38 (EXPERIMENTAL). We provide a script
to postprocess hits in the XA tag to adjust the mapping quality and generate
new primary alignments to all overlapping ALT contigs. We would NOT
recommend this feature for production uses.

	Improved alignments to many short reference sequences. Older BWA-MEM may
generate an alignment bridging two or more adjacent reference sequences.
Such alignments are split at a later step as postprocessing. This approach
is complex and does not always work. This release forbids these alignments
from the very beginning. BWA-MEM should not produce an alignment bridging
two or more reference sequences any more.

	Reduced the maximum seed occurrence from 10000 to 500. Reduced the maximum
rounds of Smith-Waterman mate rescue from 100 to 50. Added a heuristic to
lower the mapping quality if a read contains seeds with excessive
occurrences. These changes make BWA-MEM faster at a minor cost of accuracy
in highly repetitive regions.

	Added an option “-Y” to use soft clipping for supplementary alignments.

	Bugfix: incomplete alignment extension in corner cases.

	Bugfix: integer overflow when aligning long query sequences.

	Bugfix: chain score is not computed correctly (almost no practical effect)

	General code cleanup

	Added FAQs to README

Changes in BWA-backtrack:

	Bugfix: a segmentation fault when an alignment stands out of the end of the
last chromosome.

(0.7.9: 19 May 2014, r783)

Release 0.7.8 (31 March, 2014)

Changes in BWA-MEM:

	Bugfix: off-diagonal X-dropoff (option -d) not working as intended.
Short-read alignment is not affected.

	Bugfix: unnecessarily large bandwidth used during global alignment,
which reduces the mapping speed by -5% for short reads. Results are not
affected.

	Bugfix: when the matching score is not one, paired-end mapping quality is
inaccurate.

	When the matching score (option -A) is changed, scale all score-related
options accordingly unless overridden by users.

	Allow to specify different gap open (or extension) penalties for deletions
and insertions separately.

	Allow to specify the insert size distribution.

	Better and more detailed debugging information.

With the default setting, 0.7.8 and 0.7.7 gave identical output on one million
100bp read pairs.

(0.7.8: 31 March 2014, r455)

Release 0.7.7 (25 Feburary, 2014)

This release fixes incorrect MD tags in the BWA-MEM output.

A note about short-read mapping to GRCh38. The new human reference genome
GRCh38 contains 60Mbp program generated alpha repeat arrays, some of which are
hard masked as they cannot be localized. These highly repetitive arrays make
BWA-MEM -50% slower. If you are concerned with the performance of BWA-MEM, you
may consider to use option “-c2000 -m50”. On simulated data, this setting helps
the performance at a very minor cost on accuracy. I may consider to change the
default in future releases.

(0.7.7: 25 Feburary 2014, r441)

Release 0.7.6 (31 Januaray, 2014)

Changes in BWA-MEM:

	Changed the way mapping quality is estimated. The new method tends to give
the same alignment a higher mapping quality. On paired-end reads, the change
is minor as with pairing, the mapping quality is usually high. For short
single-end reads, the difference is considerable.

	Improved load balance when many threads are spawned. However, bwa-mem is
still not very thread efficient, probably due to the frequent heap memory
allocation. Further improvement is a little difficult and may affect the
code stability.

	Allow to use different clipping penalties for 5’- and 3’-ends. This helps
when we do not want to clip one end.

	Print the @PG line, including the command line options.

	Improved the band width estimate: a) fixed a bug causing the band
width extimated from extension not used in the final global alignment; b)
try doubled band width if the global alignment score is smaller.
Insufficient band width leads to wrong CIGAR and spurious mismatches/indels.

	Added a new option -D to fine tune a heuristic on dropping suboptimal hits.
Reducing -D increases accuracy but decreases the mapping speed. If unsure,
leave it to the default.

	Bugfix: for a repetitive single-end read, the reported hit is not randomly
distributed among equally best hits.

	Bugfix: missing paired-end hits due to unsorted list of SE hits.

	Bugfix: incorrect CIGAR caused by a defect in the global alignment.

	Bugfix: incorrect CIGAR caused by failed SW rescue.

	Bugfix: alignments largely mapped to the same position are regarded to be
distinct from each other, which leads to underestimated mapping quality.

	Added the MD tag.

There are no changes to BWA-backtrack in this release. However, it has a few
known issues yet to be fixed. If you prefer BWA-track, It is still advised to
use bwa-0.6.x.

While I developed BWA-MEM, I also found a few issues with BWA-SW. It is now
possible to improve BWA-SW with the lessons learned from BWA-MEM. However, as
BWA-MEM is usually better, I will not improve BWA-SW until I find applications
where BWA-SW may excel.

(0.7.6: 31 January 2014, r432)

Release 0.7.5a (30 May, 2013)

Fixed a bug in BWA-backtrack which leads to off-by-one mapping errors in rare
cases.

(0.7.5a: 30 May 2013, r405)

Release 0.7.5 (29 May, 2013)

Changes in all components:

	Improved error checking on memory allocation and file I/O. Patches provided
by Rob Davies.

	Updated README.

	Bugfix: return code is zero upon errors.

Changes in BWA-MEM:

	Changed the way a chimeric alignment is reported (conforming to the upcoming
SAM spec v1.5). With 0.7.5, if the read has a chimeric alignment, the paired
or the top hit uses soft clipping and is marked with neither 0x800 nor 0x100
bits. All the other hits part of the chimeric alignment will use hard
clipping and be marked with 0x800 if option “-M” is not in use, or marked
with 0x100 otherwise.

	Other hits part of a chimeric alignment are now reported in the SA tag,
conforming to the SAM spec v1.5.

	Better method for resolving an alignment bridging two or more short
reference sequences. The current strategy maps the query to the reference
sequence that covers the middle point of the alignment. For most
applications, this change has no effects.

Changes in BWA-backtrack:

	Added a magic number to .sai files. This prevents samse/sampe from reading
corrupted .sai (e.g. a .sai file containing LSF log) or incompatible .sai
generated by a different version of bwa.

	Bugfix: alignments in the XA:Z: tag were wrong.

	Keep track of #ins and #del during backtracking. This simplifies the code
and reduces errors in rare corner cases. I should have done this in the
early days of bwa.

In addition, if you use BWA-MEM or the fastmap command of BWA, please cite:

	Li H. (2013) Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM. arXiv:1303.3997v2 [q-bio.GN].

Thank you.

(0.7.5: 29 May 2013, r404)

Release 0.7.4 (23 April, 2013)

This is a bugfix release. Most of bugs are considered to be minor which only
occur very rarely.

	Bugfix: wrong CIGAR when a query sequence bridges three or more target
sequences. This only happens when aligning reads to short assembly contigs.

	Bugfix: leading “D” operator in CIGAR.

	Extend more seeds for better alignment around tandem repeats. This is also
a cause of the leading “D” operator in CIGAR.

	Bugfix: SSE2-SSW may occasionally find incorrect query starting position
around tandem repeat. This will lead to a suboptimal CIGAR in BWA-MEM and
a wrong CIGAR in BWA.

	Bugfix: clipping penalty does not work as is intended when there is a gap
towards the end of a read.

	Fixed an issue caused by a bug in the libc from Mac/Darwin. In Darwin,
fread() is unable to read a data block longer than 2GB due to an integer
overflow bug in its implementation.

Since version 0.7.4, BWA-MEM is considered to reach similar stability to
BWA-backtrack for short-read mapping.

(0.7.4: 23 April, r385)

Release 0.7.3a (15 March, 2013)

In 0.7.3, the wrong CIGAR bug was only fixed in one scenario, but not fixed
in another corner case.

(0.7.3a: 15 March 2013, r367)

Release 0.7.3 (15 March, 2013)

Changes to BWA-MEM:

	Bugfix: pairing score is inaccurate when option -A does not take the default
value. This is a very minor issue even if it happens.

	Bugfix: occasionally wrong CIGAR. This happens when in the alignment there
is a 1bp deletion and a 1bp insertion which are close to the end of the
reads, and there are no other substitutions or indels. BWA-MEM would not do
a gapped alignment due to the bug.

	New feature: output other non-overlapping alignments in the XP tag such that
we can see the entire picture of alignment from one SAM line. XP gives the
position, CIGAR, NM and mapQ of each aligned subsequence of the query.

BWA-MEM has been used to align -300Gbp 100-700bp SE/PE reads. SNP/indel calling
has also been evaluated on part of these data. BWA-MEM generally gives better
pre-filtered SNP calls than BWA. No significant issues have been observed since
0.7.2, though minor improvements or bugs (e.g. the bug fixed in this release)
are still possible. If you find potential issues, please send bug reports to
<bio-bwa-help@lists.sourceforge.net> (free registration required).

In addition, more detailed description of the BWA-MEM algorithm can be found at
<https://github.com/lh3/mem-paper>.

(0.7.3: 15 March 2013, r366)

Release 0.7.2 (9 March, 2013)

Emergent bug fix: 0.7.0 and 0.7.1 give a wrong sign to TLEN. In addition,
flagging ‘properly paired’ also gets improved a little.

(0.7.2: 9 March 2013, r351)

Release 0.7.1 (8 March, 2013)

Changes to BWA-MEM:

	Bugfix: rare segmentation fault caused by a partial hit to the end of the
last sequence.

	Bugfix: occasional mis-pairing given an interleaved fastq.

	Bugfix: wrong mate information when the mate is unmapped. SAM generated by
BWA-MEM can now be validated with Picard.

	Improved the performance and accuracy for ultra-long query sequences.
Short-read alignment is not affected.

Changes to other components:

	In BWA-backtrack and BWA-SW, replaced the code for global alignment,
Smith-Waterman and SW extension. The performance and accuracy of the two
algorithms stay the same.

	Added an experimental subcommand to merge overlapping paired ends. The
algorithm is very conservative: it may miss true overlaps but rarely makes
mistakes.

An important note is that like BWA-SW, BWA-MEM may output multiple primary
alignments for a read, which may cause problems to some tools. For aligning
sequence reads, it is advised to use ‘-M’ to flag extra hits as secondary. This
option is not the default because multiple primary alignments are theoretically
possible in sequence alignment.

(0.7.1: 8 March 2013, r347)

Beta Release 0.7.0 (28 Feburary, 2013)

This release comes with a new alignment algorithm, BWA-MEM, for 70bp-1Mbp query
sequences. BWA-MEM essentially seeds alignments with a variant of the fastmap
algorithm and extends seeds with banded affine-gap-penalty dynamic programming
(i.e. the Smith-Waterman-Gotoh algorithm). For typical Illumina 100bp reads or
longer low-divergence query sequences, BWA-MEM is about twice as fast as BWA
and BWA-SW and is more accurate. It also supports split alignments like BWA-SW
and may optionally output multiple hits like BWA. BWA-MEM does not guarantee
to find hits within a certain edit distance, but BWA is not efficient for such
task given longer reads anyway, and the edit-distance criterion is arguably
not as important in long-read alignment.

In addition to the algorithmic improvements, BWA-MEM also implements a few
handy features in practical aspects:

	BWA-MEM automatically switches between local and glocal (global wrt reads;
local wrt reference) alignment. It reports the end-to-end glocal alignment
if the glocal alignment is not much worse than the optimal local alignment.
Glocal alignment reduces reference bias.

	BWA-MEM automatically infers pair orientation from a batch of single-end
alignments. It allows more than one orientations if there are sufficient
supporting reads. This feature has not been tested on reads from Illumina
jumping library yet. (EXPERIMENTAL)

	BWA-MEM optionally takes one interleaved fastq for paired-end mapping. It
is possible to convert a name-sorted BAM to an interleaved fastq on the fly
and feed the data stream to BWA-MEM for mapping.

	BWA-MEM optionally copies FASTA/Q comments to the final SAM output, which
helps to transfer individual read annotations to the output.

	BWA-MEM supports more advanced piping. Users can now run:
(bwa mem ref.fa ‘<bzcat r1.fq.bz2’ ‘<bzcat r2.fq.bz2’) to map bzip’d read
files without replying on bash features.

	BWA-MEM provides a few basic APIs for single-end mapping. The ‘example.c’
program in the source code directory implements a full single-end mapper in
50 lines of code.

The BWA-MEM algorithm is in the beta phase. It is not advised to use BWA-MEM
for production use yet. However, when the implementation becomes stable after a
few release cycles, existing BWA users are recommended to migrate to BWA-MEM
for 76bp or longer Illumina reads and long query sequences. The original BWA
short-read algorithm will not deliver satisfactory results for 150bp+ Illumina
reads. Change of mappers will be necessary sooner or later.

(0.7.0 beta: 28 Feburary 2013, r313)

Release 0.6.2 (19 June, 2012)

This is largely a bug-fix release. Notable changes in BWA-short and BWA-SW:

	Bugfix: BWA-SW may give bad alignments due to incorrect band width.

	Bugfix: A segmentation fault due to an out-of-boundary error. The fix is a
temporary solution. The real cause has not been identified.

	Attempt to read index from prefix.64.bwt, such that the 32-bit and 64-bit
index can coexist.

	Added options ‘-I’ and ‘-S’ to control BWA-SW pairing.

(0.6.2: 19 June 2012, r126)

Release 0.6.1 (28 November, 2011)

Notable changes to BWA-short:

	Bugfix: duplicated alternative hits in the XA tag.

	Bugfix: when trimming enabled, bwa-aln trims 1bp less.

	Disabled the color-space alignment. 0.6.x is not working with SOLiD reads at
present.

Notable changes to BWA-SW:

	Bugfix: segfault due to excessive ambiguous bases.

	Bugfix: incorrect mate position in the SE mode.

	Bugfix: rare segfault in the PE mode

	When macro _NO_SSE2 is in use, fall back to the standard Smith-Waterman
instead of SSE2-SW.

	Optionally mark split hits with lower alignment scores as secondary.

Changes to fastmap:

	Bugfix: infinite loop caused by ambiguous bases.

	Optionally output the query sequence.

(0.6.1: 28 November 2011, r104)

Release 0.5.10 and 0.6.0 (12 November, 2011)

The 0.6.0 release comes with two major changes. Firstly, the index data
structure has been changed to support genomes longer than 4GB. The forward and
reverse backward genome is now integrated in one index. This change speeds up
BWA-short by about 20% and BWA-SW by 90% with the mapping acccuracy largely
unchanged. A tradeoff is BWA requires more memory, but this is the price almost
all mappers that index the genome have to pay.

Secondly, BWA-SW in 0.6.0 now works with paired-end data. It is more accurate
for highly unique reads and more robust to long indels and structural
variations. However, BWA-short still has edges for reads with many suboptimal
hits. It is yet to know which algorithm is the best for variant calling.

0.5.10 is a bugfix release only and is likely to be the last release in the 0.5
branch unless I find critical bugs in future.

Other notable changes:

	Added the ‘fastmap’ command that finds super-maximal exact matches. It does
not give the final alignment, but runs much faster. It can be a building
block for other alignment algorithms. [0.6.0 only]

	Output the timing information before BWA exits. This also tells users that
the task has been finished instead of being killed or aborted. [0.6.0 only]

	Sped up multi-threading when using many (>20) CPU cores.

	Check I/O error.

	Increased the maximum barcode length to 63bp.

	Automatically choose the indexing algorithm.

	Bugfix: very rare segfault due to an uninitialized variable. The bug also
affects the placement of suboptimal alignments. The effect is very minor.

This release involves quite a lot of tricky changes. Although it has been
tested on a few data sets, subtle bugs may be still hidden. It is NOT
recommended to use this release in a production pipeline. In future, however,
BWA-SW may be better when reads continue to go longer. I would encourage users
to try the 0.6 release. I would also like to hear the users’ experience. Thank
you.

(0.6.0: 12 November 2011, r85)

Beta Release 0.5.9 (24 January, 2011)

Notable changes:

	Feature: barcode support via the ‘-B’ option.

	Feature: Illumina 1.3+ read format support via the ‘-I’ option.

	Bugfix: RG tags are not attached to unmapped reads.

	Bugfix: very rare bwasw mismappings

	Recommend options for PacBio reads in bwasw help message.

Also, since January 13, the BWA master repository has been moved to github:

https://github.com/lh3/bwa

The revision number has been reset. All recent changes will be first
committed to this repository.

(0.5.9: 24 January 2011, r16)

Beta Release Candidate 0.5.9rc1 (10 December, 2010)

Notable changes in bwasw:

	Output unmapped reads.

	For a repetitive read, choose a random hit instead of a fixed
one. This is not well tested.

Notable changes in bwa-short:

	Fixed a bug in the SW scoring system, which may lead to unexpected
gaps towards the end of a read.

	Fixed a bug which invalidates the randomness of repetitive reads.

	Fixed a rare memory leak.

	Allowed to specify the read group at the command line.

	Take name-grouped BAM files as input.

Changes to this release are usually safe in that they do not interfere
with the key functionality. However, the release has only been tested on
small samples instead of on large-scale real data. If anything weird
happens, please report the bugs to the bio-bwa-help mailing list.

(0.5.9rc1: 10 December 2010, r1561)

Beta Release 0.5.8 (8 June, 2010)

Notable changes in bwasw:

	Fixed an issue of missing alignments. This should happen rarely and
only when the contig/read alignment is multi-part. Very rarely, bwasw
may still miss a segment in a multi-part alignment. This is difficult
to fix, although possible.

Notable changes in bwa-short:

	Discard the SW alignment when the best single-end alignment is much
better. Such a SW alignment may caused by structural variations and
forcing it to be aligned leads to false alignment. This fix has not
been tested thoroughly. It would be great to receive more users
feedbacks on this issue.

	Fixed a typo/bug in sampe which leads to unnecessarily large memory
usage in some cases.

	Further reduced the chance of reporting ‘weird pairing’.

(0.5.8: 8 June 2010, r1442)

Beta Release 0.5.7 (1 March, 2010)

This release only has an effect on paired-end data with fat insert-size
distribution. Users are still recommended to update as the new release
improves the robustness to poor data.

	The fix for ‘weird pairing’ was not working in version 0.5.6, pointed
out by Carol Scott. It should work now.

	Optionally output to a normal file rather than to stdout (by Tim
Fennel).

(0.5.7: 1 March 2010, r1310)

Beta Release 0.5.6 (10 Feburary, 2010)

Notable changes in bwa-short:

	Report multiple hits in the SAM format at a new tag XA encoded as:
(chr,pos,CIGAR,NM;)*. By default, if a paired or single-end read has
4 or fewer hits, they will all be reported; if a read in a anomalous
pair has 11 or fewer hits, all of them will be reported.

	Perform Smith-Waterman alignment also for anomalous read pairs when
both ends have quality higher than 17. This reduces false positives
for some SV discovery algorithms.

	Do not report “weird pairing” when the insert size distribution is
too fat or has a mean close to zero.

	If a read is bridging two adjacent chromsomes, flag it as unmapped.

	Fixed a small but long existing memory leak in paired-end mapping.

	Multiple bug fixes in SOLiD mapping: a) quality “-1” can be correctly
parsed by solid2fastq.pl; b) truncated quality string is resolved; c)
SOLiD read mapped to the reverse strand is complemented.

	Bwa now calculates skewness and kurtosis of the insert size
distribution.

	Deploy a Bayesian method to estimate the maximum distance for a read
pair considered to be paired properly. The method is proposed by
Gerton Lunter, but bwa only implements a simplified version.

	Export more functions for Java bindings, by Matt Hanna (See:
http://www.broadinstitute.org/gsa/wiki/index.php/Sting_BWA/C_bindings)

	Abstract bwa CIGAR for further extension, by Rodrigo Goya.

(0.5.6: 10 Feburary 2010, r1303)

Beta Release 0.5.5 (10 November, 2009)

This is a bug fix release:

	Fixed a serious bug/typo in aln which does not occur given short
reads, but will lead to segfault for >500bp reads. Of course, the aln
command is not recommended for reads longer than 200bp, but this is a
bug anyway.

	Fixed a minor bug/typo which leads to incorrect single-end mapping
quality when one end is moved to meet the mate-pair requirement.

	Fixed a bug in samse for mapping in the color space. This bug is
caused by quality filtration added since 0.5.1.

(0.5.5: 10 November 2009, r1273)

Beta Release 0.5.4 (9 October, 2009)

Since this version, the default seed length used in the “aln” command is
changed to 32.

Notable changes in bwa-short:

	Added a new tag “XC:i” which gives the length of clipped reads.

	In sampe, skip alignments in case of a bug in the Smith-Waterman
alignment module.

	In sampe, fixed a bug in pairing when the read sequence is identical
to its reverse complement.

	In sampe, optionally preload the entire FM-index into memory to
reduce disk operations.

Notable changes in dBWT-SW/BWA-SW:

	Changed name dBWT-SW to BWA-SW.

	Optionally use “hard clipping” in the SAM output.

(0.5.4: 9 October 2009, r1245)

Beta Release 0.5.3 (15 September, 2009)

Fixed a critical bug in bwa-short: reads mapped to the reverse strand
are not complemented.

(0.5.3: 15 September 2009, r1225)

Beta Release 0.5.2 (13 September, 2009)

Notable changes in bwa-short:

	Optionally trim reads before alignment. See the manual page on ‘aln
-q’ for detailed description.

	Fixed a bug in calculating the NM tag for a gapped alignment.

	Fixed a bug given a mixture of reads with some longer than the seed
length and some shorter.

	Print SAM header.

Notable changes in dBWT-SW:

	Changed the default value of -T to 30. As a result, the accuracy is a
little higher for short reads at the cost of speed.

(0.5.2: 13 September 2009, r1223)

Beta Release 0.5.1 (2 September, 2009)

Notable changes in the short read alignment component:

	Fixed a bug in samse: do not write mate coordinates.

Notable changes in dBWT-SW:

	Randomly choose one alignment if the read is a repetitive.

	Fixed a flaw when a read is mapped across two adjacent reference
sequences. However, wrong alignment reports may still occur rarely in
this case.

	Changed the default band width to 50. The speed is slower due to this
change.

	Improved the mapping quality a little given long query sequences.

(0.5.1: 2 September 2009, r1209)

Beta Release 0.5.0 (20 August, 2009)

This release implements a novel algorithm, dBWT-SW, specifically
designed for long reads. It is 10-50 times faster than SSAHA2, depending
on the characteristics of the input data, and achieves comparable
alignment accuracy while allowing chimera detection. In comparison to
BLAT, dBWT-SW is several times faster and much more accurate especially
when the error rate is high. Please read the manual page for more
information.

The dBWT-SW algorithm is kind of developed for future sequencing
technologies which produce much longer reads with a little higher error
rate. It is still at its early development stage. Some features are
missing and it may be buggy although I have evaluated on several
simulated and real data sets. But following the “release early”
paradigm, I would like the users to try it first.

Other notable changes in BWA are:

	Fixed a rare bug in the Smith-Waterman alignment module.

	Fixed a rare bug about the wrong alignment coordinate when a read is
poorly aligned.

	Fixed a bug in generating the “mate-unmap” SAM tag when both ends in
a pair are unmapped.

(0.5.0: 20 August 2009, r1200)

Beta Release 0.4.9 (19 May, 2009)

Interestingly, the integer overflow bug claimed to be fixed in 0.4.7 has
not in fact. Now I have fixed the bug. Sorry for this and thank Quan
Long for pointing out the bug (again).

(0.4.9: 19 May 2009, r1075)

Beta Release 0.4.8 (18 May, 2009)

One change to “aln -R”. Now by default, if there are no more than ‘-R’
equally best hits, bwa will search for suboptimal hits. This change
affects the ability in finding SNPs in segmental duplications.

I have not tested this option thoroughly, but this simple change is less
likely to cause new bugs. Hope I am right.

(0.4.8: 18 May 2009, r1073)

Beta Release 0.4.7 (12 May, 2009)

Notable changes:

	Output SM (single-end mapping quality) and AM (smaller mapping
quality among the two ends) tag from sam output.

	Improved the functionality of stdsw.

	Made the XN tag more accurate.

	Fixed a very rare segfault caused by integer overflow.

	Improve the insert size estimation.

	Fixed compiling errors for some Linux systems.

(0.4.7: 12 May 2009, r1066)

Beta Release 0.4.6 (9 March, 2009)

This release improves the SOLiD support. First, a script for converting
SOLiD raw data is provided. This script is adapted from solid2fastq.pl
in the MAQ package. Second, a nucleotide reference file can be directly
used with ‘bwa index’. Third, SOLiD paired-end support is
completed. Fourth, color-space reads will be converted to nucleotides
when SAM output is generated. Color errors are corrected in this
process. Please note that like MAQ, BWA cannot make use of the primer
base and the first color.

In addition, the calculation of mapping quality is also improved a
little bit, although end-users may barely observe the difference.

(0.4.6: 9 March 2009, r915)

Beta Release 0.4.5 (18 Feburary, 2009)

Not much happened, but I think it would be good to let the users use the
latest version.

Notable changes (Thank Bob Handsaker for catching the two bugs):

	Improved bounary check. Previous version may still give incorrect
alignment coordinates in rare cases.

	Fixed a bug in SW alignment when no residue matches. This only
affects the ‘sampe’ command.

	Robustly estimate insert size without setting the maximum on the
command line. Since this release ‘sampe -a’ only has an effect if
there are not enough good pairs to infer the insert size
distribution.

	Reduced false PE alignments a little bit by using the inferred insert
size distribution. This fix may be more important for long insert
size libraries.

(0.4.5: 18 Feburary 2009, r829)

Beta Release 0.4.4 (15 Feburary, 2009)

This is mainly a bug fix release. Notable changes are:

	Imposed boundary check for extracting subsequence from the
genome. Previously this causes memory problem in rare cases.

	Fixed a bug in failing to find whether an alignment overlapping with
N on the genome.

	Changed MD tag to meet the latest SAM specification.

(0.4.4: 15 Feburary 2009, r815)

Beta Release 0.4.3 (22 January, 2009)

Notable changes:

	Treat an ambiguous base N as a mismatch. Previous versions will not
map reads containing any N.

	Automatically choose the maximum allowed number of differences. This
is important when reads of different lengths are mixed together.

	Print mate coordinate if only one end is unmapped.

	Generate MD tag. This tag encodes the mismatching positions and the
reference bases at these positions. Deletions from the reference will
also be printed.

	Optionally dump multiple hits from samse, in another concise format
rather than SAM.

	Optionally disable iterative search. This is VERY SLOOOOW, though.

	Fixed a bug in generate SAM.

(0.4.3: 22 January 2009, r787)

Beta Release 0.4.2 (9 January, 2009)

Aaron Quinlan found a bug in the indexer: the bwa indexer segfaults if
there are no comment texts in the FASTA header. This is a critical
bug. Nothing else was changed.

(0.4.2: 9 January 2009, r769)

Beta Release 0.4.1 (7 January, 2009)

I am sorry for the quick updates these days. I like to set a milestone
for BWA and this release seems to be. For paired end reads, BWA also
does Smith-Waterman alignment for an unmapped read whose mate can be
mapped confidently. With this strategy BWA achieves similar accuracy to
maq. Benchmark is also updated accordingly.

(0.4.1: 7 January 2009, r760)

Beta Release 0.4.0 (6 January, 2009)

In comparison to the release two days ago, this release is mainly tuned
for performance with some tricks I learnt from Bowtie. However, as the
indexing format has also been changed, I have to increase the version
number to 0.4.0 to emphasize that DATABASE MUST BE RE-INDEXED with
‘bwa index’.

	Improved the speed by about 20%.

	Added multi-threading to ‘bwa aln’.

(0.4.0: 6 January 2009, r756)

Beta Release 0.3.0 (4 January, 2009)

	Added paired-end support by separating SA calculation and alignment
output.

	Added SAM output.

	Added evaluation to the documentation.

(0.3.0: 4 January 2009, r741)

Beta Release 0.2.0 (15 Augusst, 2008)

	Take the subsequence at the 5’-end as seed. Seeding strategy greatly
improves the speed for long reads, at the cost of missing a few true
hits that contain many differences in the seed. Seeding also increase
the memory by 800MB.

	Fixed a bug which may miss some gapped alignments. Fixing the bug
also slows the speed a little.

(0.2.0: 15 August 2008, r428)

Beta Release 0.1.6 (08 Augusst, 2008)

	Give accurate CIGAR string.

	Add a simple interface to SW/NW alignment

(0.1.6: 08 August 2008, r414)

Beta Release 0.1.5 (27 July, 2008)

	Improve the speed. This version is expected to give the same results.

(0.1.5: 27 July 2008, r400)

Beta Release 0.1.4 (22 July, 2008)

	Fixed a bug which may cause missing gapped alignments.

	More clearly define what alignments can be found by BWA (See
manual). Now BWA runs a little slower because it will visit more
potential gapped alignments.

	A bit code clean up.

(0.1.4: 22 July 2008, r387)

Beta Release 0.1.3 (21 July, 2008)

Improve the speed with some tricks on retrieving occurences. The results
should be exactly the same as that of 0.1.2.

(0.1.3: 21 July 2008, r382)

Beta Release 0.1.2 (17 July, 2008)

Support gapped alignment. Codes for ungapped alignment has been removed.

(0.1.2: 17 July 2008, r371)

Beta Release 0.1.1 (03 June, 2008)

This is the first release of BWA, Burrows-Wheeler Alignment tool. Please
read man page for more information about this software.

(0.1.1: 03 June 2008, r349)

 ## For the Impatient

```sh
# Download bwakit (or from <http://sourceforge.net/projects/bio-bwa/files/bwakit/> manually)
wget -O- http://sourceforge.net/projects/bio-bwa/files/bwakit/bwakit-0.7.12_x64-linux.tar.bz2/download 



gzip -dc | tar xf -






# Generate the GRCh38+ALT+decoy+HLA and create the BWA index
bwa.kit/run-gen-ref hs38DH   # download GRCh38 and write hs38DH.fa
bwa.kit/bwa index hs38DH.fa  # create BWA index
# mapping
bwa.kit/run-bwamem -o out -H hs38DH.fa read1.fq read2.fq | sh  # skip “|sh” to show command lines
```

This generates out.aln.bam as the final alignment, out.hla.top for best HLA
genotypes on each gene and out.hla.all for other possible HLA genotypes.
Please check out [bwa/bwakit/README.md][kithelp] for details.

Background

GRCh38 consists of several components: chromosomal assembly, unlocalized contigs
(chromosome known but location unknown), unplaced contigs (chromosome unknown)
and ALT contigs (long clustered variations). The combination of the first three
components is called the primary assembly. It is recommended to use the
complete primary assembly for all analyses. Using ALT contigs in read mapping is
tricky.

GRCh38 ALT contigs are totaled 109Mb in length, spanning 60Mbp of the primary
assembly. However, sequences that are highly diverged from the primary assembly
only contribute a few million bp. Most subsequences of ALT contigs are nearly
identical to the primary assembly. If we align sequence reads to GRCh38+ALT
blindly, we will get many additional reads with zero mapping quality and miss
variants on them. It is crucial to make mappers aware of ALTs.

BWA-MEM is ALT-aware. It essentially computes mapping quality across the
non-redundant content of the primary assembly plus the ALT contigs and is free
of the problem above.

Methods

Sequence alignment

As of now, ALT mapping is done in two separate steps: BWA-MEM mapping and
postprocessing. The bwa.kit/run-bwamem script performs the two steps when ALT
contigs are present. The following picture shows an example about how BWA-MEM
infers mapping quality and reports alignment after step 2:

Step 1: BWA-MEM mapping

At this step, BWA-MEM reads the ALT contig names from “idxbase.alt”, ignoring
the ALT-to-ref alignment, and labels a potential hit as ALT or non-ALT,
depending on whether the hit lands on an ALT contig or not. BWA-MEM then reports
alignments and assigns mapQ following these two rules:

	The mapQ of a non-ALT hit is computed across non-ALT hits only. The mapQ of
an ALT hit is computed across all hits.

	If there are no non-ALT hits, the best ALT hit is outputted as the primary
alignment. If there are both ALT and non-ALT hits, non-ALT hits will be
primary and ALT hits be supplementary (SAM flag 0x800).

In theory, non-ALT alignments from step 1 should be identical to alignments
against the reference genome with ALT contigs. In practice, the two types of
alignments may differ in rare cases due to seeding heuristics. When an ALT hit
is significantly better than non-ALT hits, BWA-MEM may miss seeds on the
non-ALT hits.

If we don’t care about ALT hits, we may skip postprocessing (step 2).
Nonetheless, postprocessing is recommended as it improves mapQ and gives more
information about ALT hits.

Step 2: Postprocessing

Postprocessing is done with a separate script bwa-postalt.js. It reads all
potential hits reported in the XA tag, lifts ALT hits to the chromosomal
positions using the ALT-to-ref alignment, groups them based on overlaps between
their lifted positions, and then re-estimates mapQ across the best scoring hit
in each group. Being aware of the ALT-to-ref alignment, this script can greatly
improve mapQ of ALT hits and occasionally improve mapQ of non-ALT hits. It also
writes each hit overlapping the reported hit into a separate SAM line. This
enables variant calling on each ALT contig independent of others.

On the completeness of GRCh38+ALT

While GRCh38 is much more complete than GRCh37, it is still missing some true
human sequences. To make sure every piece of sequence in the reference assembly
is correct, the [Genome Reference Consortium][grc] (GRC) require each ALT contig
to have enough support from multiple sources before considering to add it to the
reference assembly. This careful and sophisticated procedure has left out some
sequences, one of which is [this example][novel], a 10kb contig assembled from
CHM1 short reads and present also in NA12878. You can try [BLAT][blat] or
[BLAST][blast] to see where it maps.

For a more complete reference genome, we compiled a new set of decoy sequences
from GenBank clones and the de novo assembly of 254 public [SGDP][sgdp] samples.
The sequences are included in hs38DH-extra.fa from the [BWA binary
package][res].

In addition to decoy, we also put multiple alleles of HLA genes in
hs38DH-extra.fa. These genomic sequences were acquired from [IMGT/HLA][hladb],
version 3.18.0 and are used to collect reads sequenced from these genes.

HLA typing

HLA genes are known to be associated with many autoimmune diseases, infectious
diseases and drug responses. They are among the most important genes but are
rarely studied by WGS projects due to the high sequence divergence between
HLA genes and the reference genome in these regions.

By including the HLA gene regions in the reference assembly as ALT contigs, we
are able to effectively identify reads coming from these genes. We also provide
a pipeline, which is included in the [BWA binary package][res], to type the
several classic HLA genes. The pipeline is conceptually simple. It de novo
assembles sequence reads mapped to each gene, aligns exon sequences of each
allele to the assembled contigs and then finds the pairs of alleles that best
explain the contigs. In practice, however, the completeness of IMGT/HLA and
copy-number changes related to these genes are not so straightforward to
resolve. HLA typing may not always be successful. Users may also consider to use
other programs for typing such as [Warren et al (2012)][hla4], [Liu et al
(2013)][hla2], [Bai et al (2014)][hla3] and [Dilthey et al (2014)][hla1], though
most of them are distributed under restrictive licenses.

Preliminary Evaluation

To check whether GRCh38 is better than GRCh37, we mapped the CHM1 and NA12878
unitigs to GRCh37 primary (hs37), GRCh38 primary (hs38) and GRCh38+ALT+decoy
(hs38DH), and called small variants from the alignment. CHM1 is haploid.
Ideally, heterozygous calls are false positives (FP). NA12878 is diploid. The
true positive (TP) heterozygous calls from NA12878 are approximately equal
to the difference between NA12878 and CHM1 heterozygous calls. A better assembly
should yield higher TP and lower FP. The following table shows the numbers for
these assemblies:

Assembly	hs37	hs38	hs38DH	CHM1_1.1	huref
:------:	——:	------:	——:	------:	——:
FP	255706	168068	142516	307172	575634
TP	2142260	2163113	2150844	2167235	2137053

With this measurement, hs38 is clearly better than hs37. Genome hs38DH reduces
FP by ~25k but also reduces TP by ~12k. We manually inspected variants called
from hs38 only and found the majority of them are associated with excessive read
depth, clustered variants or weak alignment. We believe most hs38-only calls are
problematic. In addition, if we compare two NA12878 replicates from HiSeq X10
with nearly identical library construction, the difference is ~140k, an order
of magnitude higher than the difference between hs38 and hs38DH. ALT contigs,
decoy and HLA genes in hs38DH improve variant calling and enable the analyses of
ALT contigs and HLA typing at little cost.

Problems and Future Development

There are some uncertainties about ALT mappings - we are not sure whether they
help biological discovery and don’t know the best way to analyze them. Without
clear demand from downstream analyses, it is very difficult to design the
optimal mapping strategy. The current BWA-MEM method is just a start. If it
turns out to be useful in research, we will probably rewrite bwa-postalt.js in C
for performance; if not, we may make changes. It is also possible that we might
make breakthrough on the representation of multiple genomes, in which case, we
can even get rid of ALT contigs for good.

[res]: https://sourceforge.net/projects/bio-bwa/files/bwakit
[sb]: https://github.com/GregoryFaust/samblaster
[grc]: http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/
[novel]: https://gist.github.com/lh3/9935148b71f04ba1a8cc
[blat]: https://genome.ucsc.edu/cgi-bin/hgBlat
[blast]: http://blast.st-va.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
[sgdp]: http://www.simonsfoundation.org/life-sciences/simons-genome-diversity-project/
[hladb]: http://www.ebi.ac.uk/ipd/imgt/hla/
[grcdef]: http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/info/definitions.shtml
[hla1]: http://biorxiv.org/content/early/2014/07/08/006973
[hlalink]: http://www.hladiseaseassociations.com
[hlatools]: https://www.biostars.org/p/93245/
[hla2]: http://nar.oxfordjournals.org/content/41/14/e142.full.pdf+html
[hla3]: http://www.biomedcentral.com/1471-2164/15/325
[hla4]: http://genomemedicine.com/content/4/12/95
[kithelp]: https://github.com/lh3/bwa/tree/master/bwakit

 [![Build Status](https://travis-ci.org/lh3/bwa.svg?branch=dev)](https://travis-ci.org/lh3/bwa)
Getting started

git clone https://github.com/lh3/bwa.git
cd bwa; make
./bwa index ref.fa
./bwa mem ref.fa read-se.fq.gz | gzip -3 > aln-se.sam.gz
./bwa mem ref.fa read1.fq read2.fq | gzip -3 > aln-pe.sam.gz

Introduction

BWA is a software package for mapping DNA sequences against a large reference
genome, such as the human genome. It consists of three algorithms:
BWA-backtrack, BWA-SW and BWA-MEM. The first algorithm is designed for Illumina
sequence reads up to 100bp, while the rest two for longer sequences ranged from
70bp to a few megabases. BWA-MEM and BWA-SW share similar features such as the
support of long reads and chimeric alignment, but BWA-MEM, which is the latest,
is generally recommended as it is faster and more accurate. BWA-MEM also has
better performance than BWA-backtrack for 70-100bp Illumina reads.

For all the algorithms, BWA first needs to construct the FM-index for the
reference genome (the index command). Alignment algorithms are invoked with
different sub-commands: aln/samse/sampe for BWA-backtrack,
bwasw for BWA-SW and mem for the BWA-MEM algorithm.

Availability

BWA is released under [GPLv3][1]. The latest source code is [freely
available at github][2]. Released packages can [be downloaded][3] at
SourceForge. After you acquire the source code, simply use make to compile
and copy the single executable bwa to the destination you want. The only
dependency required to build BWA is [zlib][14].

Since 0.7.11, precompiled binary for x86_64-linux is available in [bwakit][17].
In addition to BWA, this self-consistent package also comes with bwa-associated
and 3rd-party tools for proper BAM-to-FASTQ conversion, mapping to ALT contigs,
adapter triming, duplicate marking, HLA typing and associated data files.

Seeking help

The detailed usage is described in the man page available together with the
source code. You can use man ./bwa.1 to view the man page in a terminal. The
[HTML version][4] of the man page can be found at the [BWA website][5]. If you
have questions about BWA, you may [sign up the mailing list][6] and then send
the questions to [bio-bwa-help@sourceforge.net][7]. You may also ask questions
in forums such as [BioStar][8] and [SEQanswers][9].

Citing BWA

	Li H. and Durbin R. (2009) Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics, 25, 1754-1760. [PMID:
[19451168][10]]. (if you use the BWA-backtrack algorithm)

	Li H. and Durbin R. (2010) Fast and accurate long-read alignment with

Burrows-Wheeler transform. Bioinformatics, 26, 589-595. [PMID:
[20080505][11]]. (if you use the BWA-SW algorithm)

	Li H. (2013) Aligning sequence reads, clone sequences and assembly contigs

with BWA-MEM. [arXiv:1303.3997v2][12] [q-bio.GN]. (if you use the BWA-MEM
algorithm or the fastmap command, or want to cite the whole BWA package)

Please note that the last reference is a preprint hosted at [arXiv.org][13]. I
do not have plan to submit it to a peer-reviewed journal in the near future.

Frequently asked questions (FAQs)

	[What types of data does BWA work with?](#type)

	[Why does a read appear multiple times in the output SAM?](#multihit)

	[Does BWA work on reference sequences longer than 4GB in total?](#4gb)

	[Why can one read in a pair has high mapping quality but the other has zero?](#pe0)

	[How can a BWA-backtrack alignment stands out of the end of a chromosome?](#endref)

	[Does BWA work with ALT contigs in the GRCh38 release?](#altctg)

	[Can I just run BWA-MEM against GRCh38+ALT without post-processing?](#postalt)

1. What types of data does BWA work with?

BWA works with a variety types of DNA sequence data, though the optimal
algorithm and setting may vary. The following list gives the recommended
settings:

	Illumina/454/IonTorrent single-end reads longer than ~70bp or assembly
contigs up to a few megabases mapped to a closely related reference genome:

bwa mem ref.fa reads.fq > aln.sam

	Illumina single-end reads shorter than ~70bp:

bwa aln ref.fa reads.fq > reads.sai; bwa samse ref.fa reads.sai reads.fq > aln-se.sam

	Illumina/454/IonTorrent paired-end reads longer than ~70bp:

bwa mem ref.fa read1.fq read2.fq > aln-pe.sam

	Illumina paired-end reads shorter than ~70bp:

bwa aln ref.fa read1.fq > read1.sai; bwa aln ref.fa read2.fq > read2.sai
bwa sampe ref.fa read1.sai read2.sai read1.fq read2.fq > aln-pe.sam

	PacBio subreads or Oxford Nanopore reads to a reference genome:

bwa mem -x pacbio ref.fa reads.fq > aln.sam
bwa mem -x ont2d ref.fa reads.fq > aln.sam

BWA-MEM is recommended for query sequences longer than ~70bp for a variety of
error rates (or sequence divergence). Generally, BWA-MEM is more tolerant with
errors given longer query sequences as the chance of missing all seeds is small.
As is shown above, with non-default settings, BWA-MEM works with Oxford Nanopore
reads with a sequencing error rate over 20%.

2. Why does a read appear multiple times in the output SAM?

BWA-SW and BWA-MEM perform local alignments. If there is a translocation, a gene
fusion or a long deletion, a read bridging the break point may have two hits,
occupying two lines in the SAM output. With the default setting of BWA-MEM, one
and only one line is primary and is soft clipped; other lines are tagged with
0x800 SAM flag (supplementary alignment) and are hard clipped.

3. Does BWA work on reference sequences longer than 4GB in total?

Yes. Since 0.6.x, all BWA algorithms work with a genome with total length over
4GB. However, individual chromosome should not be longer than 2GB.

4. Why can one read in a pair have a high mapping quality but the other has zero?

This is correct. Mapping quality is assigned for individual read, not for a read
pair. It is possible that one read can be mapped unambiguously, but its mate
falls in a tandem repeat and thus its accurate position cannot be determined.

5. How can a BWA-backtrack alignment stand out of the end of a chromosome?

Internally BWA concatenates all reference sequences into one long sequence. A
read may be mapped to the junction of two adjacent reference sequences. In this
case, BWA-backtrack will flag the read as unmapped (0x4), but you will see
position, CIGAR and all the tags. A similar issue may occur to BWA-SW alignment
as well. BWA-MEM does not have this problem.

6. Does BWA work with ALT contigs in the GRCh38 release?

Yes, since 0.7.11, BWA-MEM officially supports mapping to GRCh38+ALT.
BWA-backtrack and BWA-SW don’t properly support ALT mapping as of now. Please
see [README-alt.md][18] for details. Briefly, it is recommended to use
[bwakit][17], the binary release of BWA, for generating the reference genome
and for mapping.

7. Can I just run BWA-MEM against GRCh38+ALT without post-processing?

If you are not interested in hits to ALT contigs, it is okay to run BWA-MEM
without post-processing. The alignments produced this way are very close to
alignments against GRCh38 without ALT contigs. Nonetheless, applying
post-processing helps to reduce false mappings caused by reads from the
diverged part of ALT contigs and also enables HLA typing. It is recommended to
run the post-processing script.

[1]: http://en.wikipedia.org/wiki/GNU_General_Public_License
[2]: https://github.com/lh3/bwa
[3]: http://sourceforge.net/projects/bio-bwa/files/
[4]: http://bio-bwa.sourceforge.net/bwa.shtml
[5]: http://bio-bwa.sourceforge.net/
[6]: https://lists.sourceforge.net/lists/listinfo/bio-bwa-help
[7]: mailto:bio-bwa-help@sourceforge.net
[8]: http://biostars.org
[9]: http://seqanswers.com/
[10]: http://www.ncbi.nlm.nih.gov/pubmed/19451168
[11]: http://www.ncbi.nlm.nih.gov/pubmed/20080505
[12]: http://arxiv.org/abs/1303.3997
[13]: http://arxiv.org/
[14]: http://zlib.net/
[15]: https://github.com/lh3/bwa/tree/mem
[16]: ftp://ftp.ncbi.nlm.nih.gov/genbank/genomes/Eukaryotes/vertebrates_mammals/Homo_sapiens/GRCh38/seqs_for_alignment_pipelines/
[17]: http://sourceforge.net/projects/bio-bwa/files/bwakit/
[18]: https://github.com/lh3/bwa/blob/master/README-alt.md

 ## Introduction

Bwakit is a self-consistent installation-free package of scripts and precompiled
binaries, providing an end-to-end solution to read mapping. In addition to the
basic mapping functionality implemented in bwa, bwakit is able to generate
proper human reference genome and to take advantage of ALT contigs, if present,
to improve read mapping and to perform HLA typing for high-coverage human data.
It can remap name- or coordinate-sorted BAM with read group and barcode
information retained. Bwakit also optionally trims adapters (via
[trimadap][ta]), marks duplicates (via [samblaster][sb]) and sorts the final
alignment (via [samtools][smtl]).

Bwakit has two entry scripts: run-gen-ref which downloads and generates human
reference genomes, and run-bwamem which prints mapping command lines on the
standard output that can be piped to sh to execute. The two scripts will call
other programs or use data in bwa.kit. The following shows an example about
how to use bwakit:

```sh
# Download the bwa-0.7.11 binary package (download link may change)
wget -O- http://sourceforge.net/projects/bio-bwa/files/bwakit/bwakit-0.7.12_x64-linux.tar.bz2/download 



gzip -dc | tar xf -






# Generate the GRCh38+ALT+decoy+HLA and create the BWA index
bwa.kit/run-gen-ref hs38DH   # download GRCh38 and write hs38DH.fa
bwa.kit/bwa index hs38DH.fa  # create BWA index
# mapping
bwa.kit/run-bwamem -o out -H hs38DH.fa read1.fq read2.fq | sh
```

The last mapping command line will generate the following files:

	out.aln.bam: unsorted alignments with ALT-aware mapping quality. In this
file, one read may be placed on multiple overlapping ALT contigs at the same
time even if the read is mapped better to some contigs than others. This makes
it possible to analyze each contig independent of others.

	out.hla.top: best genotypes for HLA-A, -B, -C, -DQA1, -DQB1 and -DRB1 genes.

	out.hla.all: other possible genotypes on the six HLA genes.

	out.log.*: bwa-mem, samblaster and HLA typing log files.

Bwakit can be [downloaded here][res]. It is only available to x86_64-linux. The
scripts in the package are available in the [bwa/bwakit][kit] directory.
Packaging is done manually for now.

Limitations

	HLA typing only works for high-coverage human data. The typing accuracy can
still be improved. We encourage researchers to develop better HLA typing tools
based on the intermediate output of bwakit (for each HLA gene included in the
index, bwakit writes all reads matching it in a separate file).

	Duplicate marking only works when all reads from a single paired-end library
are provided as the input. This limitation is the necessary tradeoff of fast
MarkDuplicate provided by samblaster.

	The adapter trimmer is chosen as it is fast, pipe friendly and does not
discard reads. However, it is conservative and suboptimal. If this is a
concern, it is recommended to preprocess input reads with a more sophisticated
adapter trimmer. We also hope existing trimmers can be modified to operate on
an interleaved FASTQ stream. We will replace trimadap once a better trimmer
meets our needs.

	Bwakit can be memory demanding depends on the functionality invoked. For 30X
human data, bwa-mem takes about 11GB RAM with 32 threads, samblaster uses
close to 10GB and BAM shuffling (if the input is sorted BAM) uses several GB.
In the current setting, sorting uses about 10GB.

Package Contents
```
bwa.kit
|– README.md                  This README file.
|– run-bwamem                 Entry script for the entire mapping pipeline.
|– bwa                        BWA binary
|– k8                         Interpretor for .js scripts.
|– bwa-postalt.js             Post-process alignments to ALT contigs/decoys/HLA genes.
|– htsbox                     Used by run-bwamem for shuffling BAMs and BAM=>FASTQ.
|– samblaster                 MarkDuplicates for reads from the same library. v0.1.20
|– samtools                   SAMtools for sorting and SAM=>BAM conversion. v1.1
|– seqtk                      For FASTQ manipulation.
|– trimadap                   Trim Illumina PE sequencing adapters.
|
|– run-gen-ref                *Entry script for generating human reference genomes.
|– resource-GRCh38            Resources for generating GRCh38
|   |– hs38DH-extra.fa        Decoy and HLA gene sequences. Used by run-gen-ref.
|   `– hs38DH.fa.alt          ALT-to-GRCh38 alignment. Used by run-gen-ref.
|
|– run-HLA                    HLA typing for sequences extracted by bwa-postalt.js.
|– typeHLA.sh                 Type one HLA-gene. Called by run-HLA.
|– typeHLA.js                 HLA typing from exon-to-contig alignment. Used by typeHLA.sh.
|– typeHLA-selctg.js          Select contigs overlapping HLA exons. Used by typeHLA.sh.
|– fermi2.pl                  Fermi2 wrapper. Used by typeHLA.sh for de novo assembly.
|– fermi2                     Fermi2 binary. Used by fermi2.pl.
|– ropebwt2                   RopeBWT2 binary. Used by fermi2.pl.
|– resource-human-HLA         Resources for HLA typing
|   |– HLA-ALT-exons.bed      Exonic regions of HLA ALT contigs. Used by typeHLA.sh.
|   |– HLA-CDS.fa             CDS of HLA-{A,B,C,DQA1,DQB1,DRB1} genes from IMGT/HLA-3.18.0.
|   |– HLA-ALT-type.txt       HLA types for each HLA ALT contig. Not used.
|   `– HLA-ALT-idx            BWA indices of each HLA ALT contig. Used by typeHLA.sh
|       `– (…)
|
`– doc                        BWA documentations


|– bwa.1                  Manpage
|– NEWS.md                Release Notes
|– README.md              GitHub README page
`– README-alt.md          Documentation for ALT mapping




```

[res]: https://sourceforge.net/projects/bio-bwa/files/bwakit
[sb]: https://github.com/GregoryFaust/samblaster
[ta]: https://github.com/lh3/seqtk/blob/master/trimadap.c
[smtl]: http://www.htslib.org
[kit]: https://github.com/lh3/bwa/tree/master/bwakit

 [![Prodigal Logo](http://i57.tinypic.com/n3rygn.png)](http://prodigal.ornl.gov/)

Fast, reliable protein-coding gene prediction for prokaryotic genomes.

`bash
prodigal -i my.genome.fna -o my.genes -a my.proteins.faa
prodigal -i my.metagenome.fna -o my.genes -a my.proteins.faa -p meta
prodigal -h
`

	### New in 2.6.3 (February 2016)
	
	Fixed a bug in protein translation output of partial genes where TTG/GTG

codons were being incorrectly translated to methionine.

Getting Started

Prodigal consists of a single binary, which is provided for Linux, Mac OS X, and Windows with each official release. You can also install from source (you will need Cygwin or MinGW on Windows) as follows:

`bash
$ make install
`

For more detail, see [Installing Prodigal](https://www.github.com/hyattpd/Prodigal/wiki/installation).

To see a complete list of options:

`bash
$ prodigal -h
`

Features

	Predicts protein-coding genes: Prodigal provides fast, accurate protein-coding gene predictions in GFF3, Genbank, or Sequin table format.

	Handles draft genomes and metagenomes: Prodigal runs smoothly on finished genomes, draft genomes, and metagenomes.

	Runs quickly: Prodigal analyzes the E. coli K-12 genome in 10 seconds on a modern MacBook Pro.

	Runs unsupervised: Prodigal is an unsupervised machine learning algorithm. It does not need to be provided with any training data, and instead automatically learns the properties of the genome from the sequence itself, including RBS motif usage, start codon usage, and coding statistics.

	Handles gaps and partial genes: The user can specify if Prodigal should build genes across runs of N’s as well as how to handle genes at the edges of contigs.

	Identifies translation initiation sites: Prodigal predicts the correct translation initiation site for most genes, and can output information about every potential start site in the genome, including confidence score, RBS motif, and much more.

More Information

	[Website](http://prodigal.ornl.gov/)

	[Wiki Documentation](https://github.com/hyattpd/prodigal/wiki)

	[Options Cheat Sheet](https://github.com/hyattpd/prodigal/wiki#cheat-sheet)

	[Google Discussion Group](https://groups.google.com/group/prodigal-discuss)

Contributors

	Author: [Doug Hyatt](https://github.com/hyattpd/)

License

[GPL](LICENSE)

 RPKM

C++ implementation of reads per kilobase mapped statistic. Functional analysis of de novo assembled environmental sequence
information is impeded by the lack of quantitative ORF annotations. ORF counts are affected by both sequencing depth and ORF
length, longer ORFs naturally encompass more reads, making quantitative comparisons between samples difficult. To resolve this, we have implemented a bwa-based version of the RPKM. Intuitively RPKM is a simple proportion of the number of reads mapped to a sequence section, normalized for sequencing depth and ORF length. This tools is now a part of the MetaPathways pipeline.

References:

	Kishori M. Konwar, Niels W. Hanson, Maya P. Bhatia, Dongjae Kim, Shang-Ju Wu, Aria S. Hahn, Connor Morgan-Lang, Hiu Kan Cheung, Steven J. Hallam. MetaPathways v2.5: quantitative functional, taxonomic and usability improvements. Bioinformatics 31(20), pp. 3345-3347 (2015).

	Kishori M. Konwar, Niels W. Hanson, Antoine P. Pagé, Steven J. Hallam. MetaPathways: a modular pipeline for constructing pathway/genome databases from environmental sequence information. BMC Bioinformatics 14: 202 (2013).

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

