

Welcome to MetaPathways’s documentation!

Documentation

	Overview
	Pipeline Overview

	Output Format

	Visualizing Output

	Installation
	Container Install

	Installing with Pip and Conda

	Reference Sequences

	Running MetaPathways
	Input

	Parameter File

	Run

Data Exploration

	Phandi GUI Overview

Indices and tables

	Index

	Module Index

	Search Page

Contact

contact

Overview

[image: alternate text]

MetaPathways [CIT2002] is a meta’omic analysis pipeline for the annotation and analysis for environmental sequence information.
MetaPathways include metagenomic or metatranscriptomic sequence data in one of several file formats
(.fasta, .gff, or .gbk). The pipeline consists of five operational stages including

Pipeline Overview

MetaPathways is composed of five general stages, encompassing a number of analytical or data handling steps (Figure 1):

	QC and ORF Prediction: Here MetaPathways performs basic quality control (QC) including removing duplicate
sequences and sequence trimming. Open Reading Frame (ORF) prediction is then performed on the QC’ed sequences
using Prodigal [PRODIGAL2010] or GeneMark [GeneMark12]. The final translated ORFs are
now also trimmed according to a user-defined setting.

	MetaPathways steps: PREPROCESS INPUT, ORF PREDICTION, and FILTER AMINOS

	Functional and Taxonomic Annotation: Using seed-and-extend homology search algorithms (B)LAST
[BLAST90], [LAST11], MetaPathways can be used to conduct searches against functional and taxonomic databases.

	MetaPathways steps: FUNC SEARCH, PARSE FUNC SEARCH, SCAN rRNA, and ANNOTATE ORFS

	Analyses: After sequence annotation, MetaPathways performs further taxonomic analyses including
the Lowest Common Ancestor (LCA) [http://ab.inf.uni-tuebingen.de/software/megan/] algorithm
[MEGAN07] and tRNA Scan [http://lowelab.ucsc.edu/tRNAscan-SE/] [TRNASCAN97], and
prepares detected annotations for environmental Pathway/Genome database (ePGDB) creation via Pathway Tools.

	MetaPathways Steps: PATHOLOGIC INPUT, CREATE ANNOT REPORTS, and COMPUTE RPKM.

	ePGDB Creation: MetaPathways then predicts MetaCyc pathways [http://www.metacyc.com] using
the Pathway Tools software [http://brg.ai.sri.com/ptools/]
and its pathway prediction algorithm
PathoLogic [KARP11], resulting in the creation of an environmental Pathway/Genome
Database (ePGDB), an integrative data structure of sequences, genes, pathways, and literature
annotations for integrative interpretation.

	MetaPathways Steps: BUILD ePGDB

	Pathway Export: Here MetaCyc pathways or reactions are exported in a tabular format for downstream
analysis. As of the v2.5 release, MetaPathways will perform this step automatically.

	MetaPathways Steps: BUILD ePGDB

[image: ../_images/HOacG2l.png]

Output Format

Visualizing Output

[CIT2002]
K. M. Konwar, N. W. Hanson, A. P. Pagé, S. J. Hallam, MetaPathways: a modular
pipeline for constructing pathway/genome databases from environmental sequence information.
BMC Bioinformatics 14, 202 (2013) http://www.biomedcentral.com/1471-2105/14/202

[PRODIGAL2010]
D. Hyatt et al., Prodigal: prokaryotic gene recognition and translation
initiation site identification. BMC Bioinformatics 11, 119 (2010).

[GeneMark12]

	Hyatt, P. F. LoCascio, L. J. Hauser, E. C. Uberbacher, Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 28, 2223–2230 (2012).

[BLAST90]

	
	Altschul, W. Gish, W. Miller, E. W. Myers, D. J. Lipman, Basic local alignment search tool. J Mol Biol 215, 403–410 (1990).

[LAST11]

	
	Kiełbasa, R. Wan, K. Sato, P. Horton, M. C. Frith, Adaptive seeds tame genomic sequence comparison. Genome Res 21, 487–493 (2011).

[MEGAN07]

	
	Huson, A. F. Auch, J. Qi, S. C. Schuster, MEGAN analysis of metagenomic data. Genome Res 17, 377–386 (2007).

[TRNASCAN97]

	
	Lowe, S. R. Eddy, tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25, 0955–0964 (1997).

[KARP11]

	
	Karp, M. Latendresse, R. Caspi, The pathway tools pathway prediction algorithm. Stand Genomic Sci 5, 424–429 (2011).

Installation

MetaPathways supports installing the software using Conda and Pip in a
64-bit Linux environment, or from a
container image that can be used with Docker or Singularity. If you do
not have administrator (i.e., “root”) access to your computer, we
recommend that users install MiniConda if they do not already have it
set up. For users wanting to use MetaPathways in an academic grid
computing environment, we recommend using the container image via
Singularity. Below please find a description of how to install MetaPathways
using the two supported options:

Container Install

Our container images are hosted at Quay.io [https://quay.io/repository/hallamlab/metapathways?tab=info].
The following commands assume that you are already familiar with installing and running Docker containers
via the docker or singularity executables:

Using Docker [https://sylabs.io/]:

sudo docker pull quay.io/hallamlab/metapathways

Using Singularity [https://sylabs.io/]:

singularity build metapathways.sif docker://quay.io/hallamlab/metapathways:latest

More advanced container-related commands are available as Make targets in the Makefile.

Installing with Pip and Conda

Summary

Assuming that you have all prerequisites satisfied, installng can be as simple as:

conda create --name metapathways python=3.10
conda activate metapathways
pip3 install git+https://bitbucket.org/BCB2/metapathways.git@dev#egg=MetaPathways
metapathways-install-deps.sh

Read on to learn the details.

Detailed Install

We currently offer a way to use Pip to install the MetaPathways Python package,
along with using Conda [https://conda.io] to install all dependencies. We do not yet have a Conda
package for MetaPathways. It is in the works for a future release.

For this to work, we assume that you have the following already set up in your
command line environment:

	You have Python 3 (python3) and pip3 installed

	You have already installed Conda [https://docs.conda.io/en/latest/miniconda.html], and it is activated

	Development files for zlib, liblzma` and ``libbz2 (required to install PySAM via pip)

	You have wget installed

If you are using a version of Linux that uses apt, and you have root access, then you can execute the
following to get all of the dependencies except Conda:

sudo apt-get update -y
sudo apt-get install -y \
 python3 \
 python3-pip \
 zlib1g-dev \
 liblzma-dev \
 libbz2-dev \
 wget

Installing Python Package as Root

If you have root/administrator access, install the MetaPathways Python package using the following command:

pip3 install git+https://bitbucket.org/BCB2/metapathways.git@dev#egg=MetaPathways

Installing Python Package as an Unpriviledged User

Use this form to install the package to the user’s home directory:

pip3 install --user git+https://bitbucket.org/BCB2/metapathways.git@dev#egg=MetaPathways

Make sure to add $HOME/.local/bin to your $PATH environment variable. This will allow you
to use the programs without having to type the full path each time.

Conda-Based Setup

Once you have installed the Python package, you will have the following executables either in the system Python install path, or in ~/.local/bin, so be sure to add those paths to your $PATH environment variable.

MetaPathways
metapathways-install-deps.sh
metapathways-data-install.sh
metacount
fastal
fastdb

Execute metapathways-install-deps.sh to install pipeline dependencies using Conda.

Reference Sequences

Summary

Assuming that you have MetaPathways installed, installing the reference DB can be as simple as:

metapathways-data-install.sh /media/ref-db-dir stage_fast_full

Read on for detailed instructons.

Details

MetaPathways relies on reference databases of sequences to assign
functional and taxonomic annotations to the user’s sequences. The
reference databases, and the index files for each database, take up
a significant amount of disk storage. See below for an anecdotal
example.

You cannot install these large reference databases within the
container, though. You should have a directory on a disk with plenty
of capacity, and use Docker’s and Singularity’s bind options to mount
that external directory within the container. Here’s an example using
Singularity:

singularity shell --bind /mnt/sandbox/user:/data docker://quay.io/hallamlab/metapathways:latest

The above example binds the host operating system’s
/mnt/sandbox/user directory within the running container as
/data.

Warning: Circa 2021-10, using a beefy computer with many cores and
plenty of RAM, performing the staging of the full Blast databases may
take an hour, and staging the full set of FAST databases will
take around 24 hours. The Blast refseq_protein databases take up ~90 GB of disk
capacity, while the FAST refseq_protein database takes up ~375
GB. The combination of other staged databases (including both Blast
and FAST versions) consumes an additional ~20 GB. Please make sure you
have adequate disk capacity before starting the database staging.

We use Snakemake to automate the staging of reference databases
needed by MetaPathways. We have installed Snakemake via Conda. If
you are using the Docker container, then Conda is already
initialized. If you are using the container via Singularity, you must
first initialize Conda as follows (note the space between the period
character, and the first slash character):

. /opt/conda/etc/profile.d/conda.sh

Now we can run the metapathways-data-install.sh script

metapathways-data-install.sh /media/ref-db-dir stage_fast_lite

… where /media/ref-db-dir is the reference database installation directory (make sure this directory has adequate capacity for the data to be installed).

Above we issued the stage_fast_lite command to Snakemake, as an example
that runs quickly. There are actually four options for staging the data:

	All databases, indexed for use with Blast: stage_blast_full

	All databases except RefSeq Proteome, indexed for use with Blast:
stage_blast_lite

	All databases, indexed for use with FAST: stage_fast_full

	All databases except RefSeq Proteome, indexed for use with FAST:
stage_fast_lite

So, first decide whether you want to use Blast or FAST, and then
decide whether you have the disk space and the install time to install
the NCBI RefSeq Proteome reference database. FAST runs faster than Blast,
with comparable sensitivity. And the RefSeq Proteome is currently required
for MetaPathways to accurately annotate contigs taxonomically. Thus, we
recommend running stage_fast_full, if you have the disk storage and
the time to let it run.

Running MetaPathways

Input

MetaPathways inputs are fasta files provided in an input folder. The file names must end with
a .fasta or .fas. These fasta files contains the contigs or DNA sequences from assembling.

Parameter File

The parameter file must indicate the setting for any MetaPathways run. An example paramter file
can be downloaded as

$ wget https://github.com/kishori82/MetaPathways_Python.3.0/raw/kmk-develop/data/text/template_param.txt

Below we describe the settings in the parameter file.

Run

As an illustration we donwload a small input file testsample1.fasta
in a folder named mp_input and we want the output in a folder names mp_output

$ mkdir mp_input
$ cd mp_input
$ wget https://github.com/kishori82/MetaPathways_Python.3.0/raw/kmk-develop/data/testdata/testsample1.fasta
$ cd ..

Now we kick off a run as

$ MetaPathways --input mp_input --output mp_output -p template_param.txt -d ~/MetaPathways_DBs/

Phandi GUI Overview

[image: alternate text]

MetaPathways (Phandi) GUI viwers is a stand-along desktop tool for inspecting and exporting the large amount of
outputs produced by the MetaPathways pipeline.

Index

Manual Installation

This page contains instructions on how to perform low-level
installation steps without the help of a set-up container nor
Conda. Please see the Install page for the supported installation
methods. These steps are meant for people who are interested in
hacking on the code, and know what they are doing. Here be dragons!

Setup a virtual environment

Create a python virtual environment
python Virtual enviroments venv (for Python 3) allow you to manage separate
package installations for different projects. They essentially allow you to create
a “virtual” isolated Python installation and install packages into that virtual
installation. When you switch projects, you can simply create a new virtual
environment and not have to worry about breaking the packages installed in
the other environments. It is always recommended to use a virtual environment
while trying out new Python applications.

The following command creates a new virtual environment with a name mynewenv with Python 3

$ virtualenv -p /usr/bin/python3 mynewenv

Activate the new virtual environment by running

$ source mynewenv/bin/activate

Deactivate If you want to switch projects or otherwise leave your virtual environment, simply run:

$ deactivate

pip install MetaPathways

Install MetaPathways by running:

$ pip3 install metapathways

To make sure MetaPathways is installed type

$ MetaPathways --version

which, if MetaPathways, is properly installed, will print a version number. For example

MetaPathways: Version 3.5.0

Install Binaries

Next we install trnascan-1.4, rpkm, prodigal, FAST and bwa

	::
	make extensions-build
make extensions-install

NOTE: If you lack the privileges to install these binaries system-wide, then you will need to pass the DESTDIR environment variable when calling make:

$ make DESTDIR=/home/username extensions-install

In this example, make will install the binaries into /home/username/bin, so you must have the requisite permissions to modify the /home/username directory. It will create the bin directory if it does not already exist, and copy the binaries there.

NOTE: if you would like to unstall then type

$ sudo make uninstall

Install ncbi-blast+ locally. Visit the download page [https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=Download].

For Ubuntu/Debian

$ sudo apt-get install ncbi-blast+

Create the following reference folder structure under a folder. Here we use the
example name MetaPathways_DBs

$ mkdir -p MetaPathways_DBs/taxonomic/formatted
$ mkdir -p MetaPathways_DBs/functional/formatted
$ mkdir -p MetaPathways_DBs/ncbi_tree
$ mkdir -p MetaPathways_DBs/functional_categories

MetaPathways_DBs/
├── functional
│ ├── formatted
├── functional_categories
├── ncbi_tree
└── taxonomic
 └── formatted

Download and unzip the NCBI taxonomy file to the MetaPathways_DBs/ncbi_tree folder

$ cd MetaPathways_DBs/ncbi_tree
$ wget https://github.com/kishori82/MetaPathways_Python.3.0/raw/kmk-develop/data/refdata/ncbi_taxonomy_tree.txt.gz
$ wget https://github.com/kishori82/MetaPathways_Python.3.0/raw/kmk-develop/data/refdata/ncbi.map.gz

Download and unzip functional classification files to MetaPathways_DBs/functional_hierarchy folder

$ cd MetaPathways_DBs/functional_hierarchy
$ wget https://github.com/kishori82/MetaPathways_Python.3.0/raw/kmk-develop/data/refdata/CAZY_hierarchy.txt.gz
$ wget https://github.com/kishori82/MetaPathways_Python.3.0/raw/kmk-develop/data/refdata/COG_categories.txt.gz
$ wget https://github.com/kishori82/MetaPathways_Python.3.0/raw/kmk-develop/data/refdata/KO_classification.txt.gz
$ wget https://github.com/kishori82/MetaPathways_Python.3.0/raw/kmk-develop/data/refdata/SEED_subsystems.txt.gz

and we should see the following structure

MetaPathways_DBs/
├── functional
│ ├── formatted
├── functional_categories
│ ├── CAZY_hierarchy.txt.gz
│ ├── COG_categories.txt.gz
│ ├── KO_classification.txt.gz
│ ├── SEED_subsystems.txt.gz
├── ncbi_tree
│ ├── ncbi_taxonomy_tree.txt.gz
│ ├── ncbi.map.gz
└── taxonomic
 └── formatted

Functional Reference

The functional references are protein reference sequences used for functional and taxonomic
annotation. Any set of protein references in the FASTA format can be used, e.g., we show
a few lines

>WP_096046812.1 hypothetical protein [Sulfurospirillum sp. JPD-1]
MSKKAFLFLILLVMSLQSLLVACGGSCLECHSKLRPYINDQNHAILNECITCHNQPSKNGQCGRDCFDCHSQEKVYAQKDVNAHQELKT
CGTCHKEKVDFTTPKQSIISNQQNLIHLFK
>WP_096046815.1 hypothetical protein [Sulfurospirillum sp. JPD-1]
MKKLLIILALISRLIAEDSSDLDEIKEEDIPKILSIIKDGTKEHLPMMLDDYTTLVDIVSVNNAIEYRNRINSANEHVKTILKADKGTLI
KTTFDNNKSYLCSDYETRSLLKKGAVFIYVFYDMNNAELFKFSIQEKDCQ
>WP_016244176.1 hypothetical protein [Escherichia coli]
MTDITDRHTLRRMSWSELFTAAQEAEFQRDYERARIVWSFALHVATTTINKNLSIAHIRRCDTLLHKSKTVPGNNTGGRSVCLRPQHPRR
...........

Formatting Reference Sequences

For the purpose of demonstration we walk you through the process of preparing a
small set of protein reference sequences from the NCBI Refseq protein databases.
Download the example protein reference sequence file refseq-mini.fasta.gz
to the functional folder as follows

$ cd MetaPathways_DBs/functional
$ wget https://github.com/kishori82/MetaPathways_Python.3.0/raw/kmk-develop/data/refdata/refseq-mini.fasta.gz
$ gunzip refseq-mini.fasta.gz

rename to remove the fasta suffix

$ mv refseq-mini.fasta refseq-mini
$ cat refseq-mini | grep ">" > formatted/refseq-mini-names.txt

FAST

BLAST

Format the database for blastp as follows:

$ cd MetaPathways_DBs/functional
$ makeblastdb -dbtype prot -in refseq-mini -out formatted/refseq-mini

Taxonomic Reference

 nav.xhtml

 Table of Contents

 		
 Welcome to MetaPathways’s documentation!

 		
 Overview

 		
 Pipeline Overview

 		
 Output Format

 		
 Visualizing Output

 		
 Installation

 		
 Container Install

 		
 Installing with Pip and Conda

 		
 Summary

 		
 Detailed Install

 		
 Reference Sequences

 		
 Summary

 		
 Details

 		
 Running MetaPathways

 		
 Input

 		
 Parameter File

 		
 Run

 		
 Phandi GUI Overview

_images/knn8bBb.png

_images/ubli6Wh.png
{_RUNSTATS = KEGG = COG MetaCyc SEED = CAZY |

HotLake _ALL_bin_01_to_24_Dayl4 HotLake_all_Trinity_Day21
‘Number of sequences in input file BEFORE QC (nucleotide) 1381 26495
min length (ops) 2002 201
avg length (ops) 51043 503
max length (ops) 4291518 19451
cotal base pairs (ops) 71733421 13349886
Number of sequences AFTER QC (nucleotide) 1381 26495
min length (ops) 2002 201
avg length (5ps) 48430 503
max length (ops) 4291518 19451
total base pairs (ops) 66882787 13349886
Number of translated ORFs BEFORE QC (amino) 61997 31136
min length (ops) 19 19
avg length (ops) 322 126
max length (ops) 14658 2186
total base pairs (op5) 19986115 3948691
Number o translated ORFs AFTER QC @amino) 60448 26467
min length (ops) 60 60
avg length ops) 320 141
max length (ops) 14658 2186
total base paies (ops) 19916097 3748577
‘Number of hits from metacyc-v4-2011-07-03 (LAST) éﬂlﬂ 9605
Number of hits from CAZY_2014_09_04 (LAST) 4650 2499
Number of hits from MDM_SAG_proteins (LAST) 27570 17666
Number of hits from COG_2013-12-27 (LAST) @®/ 33803
Number of hits from kegg-pep-2011-06-18 (LAST) 189715 64356
Number of its from refseq-nr-2014-01-18 (LAST) 236010 83501
Number of hits from seed-2014-01-30 (LAST) 232495 82624
Annotations meeting user defined thresholds from CAZY_2014_09_04 1188 649
Annotations meeting user defined thresholds from COG_2013-12-27 @0\ 9978
Annotations meeting user defined thresholds from kegg-pep-2011-06-18 44167
Annotations meeting user defined thresholds from MDM_SAG_proteins 7547
Annotations meeting user defined thresholds from metacyc-v4-2011-07-03
Annotations meeting user defined thresholds from refseq-nr-2014-01-18 50918 18943
Annotations meeting user defined thresholds from seed-2014-01-30 49822 17902
Total Protein Annotations 51135 19193
rRNA hits meeting user defined thresholds from GREENGENES_gg165-2012-11-06 9 0
FRNA hits meeting user defined thresholds from LSURef_L15_tax_siva 10 |72
rRNA hits meeting user defined thresholds from SSURef_NR99_115_tax_silva 10 0

_images/HOacG2l.png
/Output

> /preprocessed

gcEone s o precicion
daadd
ek
@ Jgenbank
d
Annotation i 50
(> /last_resuits
(

e s bison bstoapansdod
eu co Iresuts/rRNA
o

Amoaced
pires Ak
Iresultsannotation_tables
® ‘
Analyses Y (OBt b e
R IresultstRNA
Lon Iresuts/LCA
L Iresultsmitreemap
[— ptools!
Py Tooh % e
: s
woos Iresultspgdb
Creation
paason

©

Export
Pathways

L.

Pachway Summaris

SPathway_Tools/user/

w

NAvEIc

Jrun_statistics.
a “

e pirameterson. nucsat amnostts

_static/file.png

_static/minus.png

_static/plus.png

